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Synopsis 

Theoretical loaddeflection relations are given for the four principal modes of deflection of bonded 
circular rubber bush mountings which are constructed from rectangular blocks of rubber and are 
sufficiently long so that end effects can be ignored. These relations are applicable to the incom- 
pressible neo-Hookean and Mooney materials and are based upon a well-known, exact solution for 
the bending and stretching of a rectangular block into a circular cylindrical tube. Typical numerical 
values are tabulated and illustrated graphically. 

INTRODUCTION 

For unstressed circular cylindrical rubber bush mountings, Adkins and Gent’ 
considered four principal modes of deflection, which they termed torsional, axial, 
radial, and tilting. In a recent paper, Hill2 considered the effect of precom- 
pression on these modes of deflection. In this paper, we derive the corresponding 
load-deflection relations for bonded circular rubber bushes which are formed 
by bending and stretching a rectangular rubber block into a cylindrical tube. We 
suppose that the ends of the block are bonded along the “join” while the inner 
and outer curved surfaces of the tube are bonded in the usual way to rigid metal 
cylinders. The four principal modes of deflection are produced by fixing the 
outer metal cylinder while the inner one undergoes the following displacements: 
(i) a rotation about its axis (torsional), (ii) a translation in which each point moves 
parallel to the axis (axial), (iii) a translation in which each point moves through 
an equal distance in a radial direction (radial), and (iv) a rotation of the axis in 
a radial plane about a point on itself midway between the plane ends of the tube 
(tilting or conical). 

For homogeneous isotropic incompressible hyperelastic materials, the bending 
and stretching of a rectangular block into a circular cylindrical tube is described 
by a well-known, exact solution due to R i ~ l i n . ~  If we assume the bush to be 
sufficiently long so that end effects can be ignored, then relatively simple load- 
deflection relations can be derived for the four principal modes of deflection 
which are superimposed upon the initial deformation. These relations, which 
have not been given previously, are derived briefly in the Appendix for the 
neo-Hookean and Mooney materials. 

In the following section we define the geometry of the bush, and we note the 
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Fig. 1. Bending and stretching of a rectangular block into a circular cylindrical tube. 

deformation which describes the bending and stretching of a rubber block into 
a circular cylindrical tube. In the section thereafter, we summarize the load- 
deflection relations for the four principal deformation modes which are super- 
imposed upon (1). Also in this section, we note the approximate load-deflection 
relations which are applicable to extremely thin sheets of rubber. These ap- 
proximate relations can be identified with the corresponding approximate 
relations for “thin” unstressed rubber bushes which can be deduced from results 
given in either Adkins and Gent’ or In the final section, we illustrate the 
load-deflection relations with typical numerical values. 

THEORETICAL PRELIMINARIES 

We suppose that an undeformed rectangular rubber block of length L ,  height 
2h, and thickness t is deformed as indicated in Figure 1 into a circular cylindrical 
tube of inner and outer radii a and b,  respectively, by the deformation 

where (X, Y,Z) are rectangular Cartesian coordinates in the undeformed body, 
(r,B,z) are cylindrical polar coordinates in the deformed body, and X is a constant 
given by 

2th 
A =  

r ( b 2  - a’) 

We note that the new length of the tube is X L  and that we shall assume the initial 
and final cross sections are given so that X is determined by eq. (2). We now 
suppose that the tube is simultaneously bonded along the “join” and along its 
curved surfaces to rigid metal cylinders. Load-deflection relations for the four 
principal modes of deflection are derived in the Appendix and summarized in 
the following section. We remark that Rivlin3 has shown that eq. (1) is valid for 
any homogeneous isotropic incompressible hyperelastic material. However, 
we shall only consider the case of the neo-Hookean and Mooney materials, which 
are standard prototypes for rubber-like materials. The Mooney form of the 
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strain-energy function is given by 

c = Cl(I1 - 3) + CZ(I2 - 3) (3) 

where I1 and I 2  are the principal invariants of the finite deformation strain tensor, 
and C1 and C2 are material constants for which C2 = 0 for the neo-Hookean 
material. 

LOAD-DEFLECTION RELATIONS 

Before summarizing the load-deflection relations which are derived in the 
Appendix, we make the following points. Firstly, we remind the reader that eqs. 
(4), (5), (6), and (7) are “exact” results for bushes which are sufficiently long so 
that end effects can be ignored, whereas the load-deflection relation (10) for 
tilting deformations is only an “estimate” based on an approximate argument 
given originally by Adkins and Gent.l Secondly, we remark that the results for 
torsional and axial deflections are valid for large strains, whereas the radial and 
tilting relations are applicable only for small deflections. Finally, we mention 
that we have added an asterisk to the forces and moments given below so as to 
avoid any confusion with the corresponding results given in 

Torsional Deflections 

The couple M* required to rotate the inner metal cylinder about its axis 
through an angle 80 which is not necessarily small is given by 

Axial Deflections 

For the Mooney material, the force F* required to displace the inner metal 
cylinder through a distance zo parallel to its axis is given by 

(C2 * 0)  (5) 
87rC2Lzo 
Clh2  + C27r2b2 

F* = 

log (C lh2  + Czp202) 

while for the neo-Hookean material, we have 

and we note that eq. (6) can be derived from (5) if we take the appropriate limit 
of (5) as C2 tends to zero. 

Radial Deflections 

For small radial deformations, the force G* which is required to displace the 
inner metal cylinder a distance c uniformly along its length in “any” radial di- 
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rection is given by 

where 01 and are defined by 

(8) 
r t a  r t b 2  

h(b*  - a2)’ = h ( b 2  - a2)  
a =  

and the function 4([ ,~)  is given by 

where I1 and K1 are the usual modified Bessel functions of order one. 

Tilting or Conical Deflections 

Employing the argument given by Adkins and Gent,l we can show that for long 
bushes, the couple N* required to rotate the axis of the inner metal cylinder 
through a small angle 6 about its midpoint is given “approximately” by 

where G * / E  is obtained from eq. (7). 
If for thin sheets of rubber for which t /h is small we take X to be of order unity, 

then from the above we obtain the following approximate load-deflection rela- 
tions: 

ha Lz 
t th 

M* - 2p0 - LBO, F* - 4(C,h2 + C2r2a2) 

r2a 1r2a 

t3h t3h 
12po-~t ,  N* -p0--L36 G* - 

where pug = 2(C1 + C,) is the usual linear shear modulus. It is interesting to note 
that if now we suppose 

t - ( b  - a ) ,  h - r a  (12) 

then the relations obtained from eq. (11) agree with those for “thin” unstressed 
bushes which can be deduced from results given in either Adkins and Gent1 or 

In the following section we illustrate the above relations by means of the ra- 
tios 

(13) 
N* m* = M* - f *=- - ,  F* g*=- G* n* = - 

Mo ’ FO GO ’ NO 
where Mo, Fo, Go, and No are the forces and moments for an unstressed rubber 
bush of length L and inner and outer radii a and b ,  respectively. Expressions 
for these quantities are given by and we note that these ratios are of order 
unity if t/h and ( b  - a ) / h  are small compared with unity and are of the same 
magnitude. 
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TABLE I 
Numerical Values of m *, f * ,  g * ,  and n* for Various Values of t / h  for the 

Neo-Hookean Material (C; = 0 )  with b /a  = 2.0 and h / a  = 71 

Param- 
eter Numerical values 

t / h  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
m* 5.17 2.58 1.72 1.29 1.03 0.86 0.74 0.65 0.57 0.52 
f* 4.41 2.21 1.47 1.10 0.88 0.74 0.63 0.55 0.49 0.44 
g* 4.63 2.33 1.57 1.19 0.97 0.83 0.73 0.66 0.60 0.56 
n* 0.05 0.10 0.16 0.21 0.27 0.33 0.39 0.46 0.53 0.61 

TABLE I1 
Numerical Values of m*, p, g*, and n* for Various Values of t / h  for the Mooney 

Material (C, /C,  = 0.1) with b /a  = 2.0 and h/a  = R  

Param- 
eter Numerical values 

t / h  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
m* 4.70 2.36 1.58 1.20 0.97 0.81 0.71 0.63 0.57 0.52 
f* 4.99 2.50 1.66 1.25 1.00 0.83 0.71 0.62 0.55 0.50 
g* 4.21 2.13 1.44 1.10 0.91 0.78 0.70 0.64 0.59 0.56 
n* 0.05 0.09 0.14 0.19 0.25 0.31 0.38 0.45 0.53 0.62 

NUMERICAL RESULTS 

In order to illustrate the above load-deflection relations, we consider the ratios 
bla and hla to be fixed, and we vary tlh. With bla = 2.0 and hla = r ,  typical 
numerical values of m*, f*, g*, and n* are given in Tables I and I1 for the neo- 
Hookean (C, = 0) and Mooney (C2ICl = 0.1) materials, respectively. These 
results are illustrated graphically in Figures 2 and 3. From these results, we see 
that m*, f*, and g* vary uniformly with tlh and, moreover, are significantly 
greater than unity for small values of tlh. However, these increases appear to 
be at the expense of a significant decrease in n*. These low values of n* are due 
primarily to X being small, since from eqs. (10) and (13) we have 

and from eq. (2) we have, for the particular ratios bla = 2.0 and hla = H, 

= 27. 3 h  (’> 
Thus for small tlh, X is small and hence, from eq. (14), n* is small. We again 
remind the reader that (10) is only an “estimate” for N* and that considering 
the uniform behavior of the three ratios m*, f * ,  and g * ,  the result (10) may well 
be unreliable. Certainly, the feature that n* is decreased whenever m*, f * ,  and 
g* are increased is a typical characteristic of the load-deflection relations given 
above. This decrease in n* may well be a practical characteristic of such bushes, 
although it may not be as severe as that suggested from the above results. 

In conclusion, for bonded cylindrical rubber bush mountings which are formed 
by bending and stretching a rectangular block of rubber into a cylindrical tube, 
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Fig. 2. Variation of m*, j* ,  g*, and n* with tlh for the neo-Hookean material ( C z  = 0 )  with bla 
= 2.0 and h/a = x .  
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Fig. 3. Variation of m*, j*, g*, and n* with tlh for the Mooney material (C, /C,  = 0.1) with bla 
= 2.0 and hla = x. 

load-deflection relations have been given for the four principal deformation 
modes. These relations are applicable to long bushes and are valid for the in- 
compressible neo-Hookean and Mooney materials. Numerical results are given 
which indicate that the stiffnesses for the torsional, axial, and radial modes can 
be considerably increased using bushes of this type. However, it would appear 
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that these increases are accompanied by a decrease in the tilting stiffness. 
Whether or not this decrease occurs in practice will have to be decided by ex- 
periment. 

Appendix 

In this Appendix, we give a brief derivation of the load-deflection relations (4) and (7) for torsional 
and radial deflections. For axial deflections, we indicate how (5) and (6) can be deduced, while for 
the tilting load-deflection relation (lo), we refer the reader to either Adkins and Gent' or 
Before considering the load-deflection relations, we summarize the basic equations for large elastic 
plane deformations of a Mooney material. For material rectangular Cartesian coordinates ( X ,  Y ,Z)  
and spatial cylindrical polar coordinates (r,B,z), we consider the plane deformation 

r = r ( X , Y ) ,  0 = B(X,Y),  z = XZ ( A l l  

where A is a positive constant. For an isotropic incompressible Mooney material, ( A l )  satisfies the 
following: 

1 
rx8y  - ry0x = - 

Xr 

p :  = p ( V 2 r  - r(e5 + 0;)) 

where subscripts denote partial differentiation, p * is the pressure function associated with incom- 
pressible materials, p = 2(C1 + X2C2), and V2 is the two-dimensional Laplacian given by 

For a derivation of these equations and for the associated stress components t ' j ,  the reader is referred 
to Hill.4 Using these stress components, we can show that the force G * ,  which must be applied in 
the direction B = 0 to a curve which was originally given by the straight line X = constant, is given 
by 

G* = L l: [-Xp(r sin 6')y + p ( r  cos B)x]dY 

where the lengths L and h are those defined previously. 
If we write the deformation (1) as 

r = (AX + B)'l2, 0 = CY + D, z = XZ (A5) 

where A, B, C, and D are constants which are readily identified from (I), then we can show that (A5) 
is a solution of (A2) where the pressure function is given by 

- C'X] + u 

where u is a constant. If to'j denotes the stress tensor for (A5), then we assume that the constant 
u is determined by the condition 

lb ta3 rdr = 0 

which approximates the boundary condition of zero surface tractions on the plane ends of the cy- 
lindrical rubber tube. 

For torsional deflections superimposed upon (A5), we look for a solution of (A2) of the form 

r = ( A X + B ) 1 / 2 ,  B = C Y + D + f ( X ) ,  z = X Z  (A8) 

where f ( X )  is a function of X only which satisfies the displacement boundary conditions 

f ( 0 )  = 0, f ( t )  = Bo. (A9) 
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From (A2) and (A8), we find that 

f (X) = a1 log (AX + B )  + 012 (A10) 

where a1 and a2 are constants which are determined by (A9). On evaluating these constants and 
the stress tensor associated with (A8), it is a simple matter to show that the required couple M* is 
given by (4). 

In a similar manner for axial deflections we look for a solution of the three-dimensional equations 
of finite elasticity of the form 

8 = C Y  + D, r = (AX + E)’ /2 ,  z = XZ + g ( X )  ( A l l )  

where g(X) is a function of X only which satisfies the displacement boundary conditions 

d o )  = 0, g ( t )  = 20 (A12) 

We find that for the Mooney material we have 

g ( X )  = PI log [Ci  + C2Cz(AX + B)]  + 0 2  (C2 * 0) (A131 

while for the neo-Hookean material we obtain 

g(X) = YlX + 7 2  (C, = 0 )  

where PI,  02, 71, and YZ are constants which are determined by (A12). Omitting the details, (A13) 
and (A14) can be shown to give rise to the load-deflection relations (5) and (6), respectively. We 
note that the relations (4), (51, and (6) have not been given previously, although the deformations 
of the form (A81 and ( A l l )  have been considered by previous authors. For further references and 
for the general theory leading to (A13) and (A14), the reader is referred to Truesdell and Noll, page 

For radial deformations, we suppose e is the small distance moved by the inner cylinder in the 
201.5 

direction 8 = 0, and we look for solutions of (A2) of the form 

r = (AX + E)1/2 + ~ ( x )  cos (CY + D )  

8 = C Y  + D + eu(x)kl/’sin ( C Y  + D )  

p* = po(X) + e p ( ~ ) A ~ k ~ / ~  cos ( C Y  + D) (A151 

where k = C/A and u, u, and p are functions of x only which is defined by 

x = k(AX + B) .  (A16) 

In terms of these functions, the displacement boundary conditions a t  the inner and outer cylinders 
can be shown to become 

u(a) = 1, u ( a )  = - f f -1/2 

u(0)  = 0, u ( P )  = 0 (A17) 

where a and 0 are defined by (8). We note here that, by considering a radial displacement in an 
arbitrary radial direction, we can show that the load-deflection relation (7) is independent of this 
arbitrary direction, and therefore there is no loss of generality in considering displacements in the 
direction 0 = 0. 

On substituting (A151 into (A2) and (A4) and considering only terms of order e, we obtain the 
following: 

1 u’ u 
-p = px u” + - + - + 21%‘ 1 x 4x512 

G* = - 7 r f L [ - 2 X q J  + p ( u  - x14J)’] (A181 

where primes denote differentiation with respect to x.  The force G* must be independent of x ,  and 
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thus we obtain immediately the first integral 

-2X ‘”p + p(U - X ’/%)’ = -4~61 (A19) 

where 61 is a constant and (A18)4 becomes 

G* = 4apcL61 (A20) 

If we now eliminate u from (A19) by means of (A18)l and then substitute the resulting expression 
for p in 

x2w” + x u ’  - (1 + x q w  = 61x1’2 6421) 

we obtain after some simplifications 

where w = x %’. The solution for u can be shown to be given by 

where bz, 63, and 64 are further arbitrary constants and I1 and K1 are the usual modified Bessel 
functions of order one. 

If now from (A18)l and (A22) we obtain an expression for u ( x ) ,  then from this result and (A221 
we can show from the boundary.conditions (A17) that 61 is given by 

[ L ’ d w d d v  1’ dP,tl)dv - dcu,P) 1’ 1‘ d(t,v)dv d t ]  

where @(t,v) is defined by (9). Thus, from (A20) and (A23), we obtain the required load-deflection 
relation (7) for small radial deformations. 
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